

Multiplier Event | 25 May 2023

International Technical Semester Interdisciplinary Scientific Project

- 2. Purpose, topics and approach
- 3. Case study: Materials selection for UAV's frame
- 4. Photo snapshots

		LTTA – Int	erdisciplinary Scien	tific Project					
	Athens, Greece, Feb 20- Feb 24, 2023								
	Monday	Tuesday	Wednesday	Thursday	Friday				
	Feb 20	Feb 21	Feb 22	Feb 23	Feb 24				
Time									
08:00 - 09:20	Brief introduction to EUCTS & LTTA Prof. Ang. Koutsomichalis	IT systems for UAVs Prof. C. Pavlatos	Composite Materials for UAVs	Work Group study on					
09:20 - 10:15	Short guide to HAFA premises. Ice-breaking event	Electronics for UAVs A Prof. P. Papakanellos	Prof. E. Georgiou & A. Koutsomichalis	Project tasks	Project presentation				
10:15 - 10:35	snack & coffee	snack & coffee	snack & coffee	snack & coffee					
10:35 - 11:20	Project description. High Altitude Long Endurance unmanned system		Energy systems for	Work Group study on					
11:30 - 12:15	Prof. T Lekas	Visit to the Hellenic Air Force Museum	Energy systems for UAVs Prof. I. Templalexis	Project tasks	Course Evaluation				
12:25 - 13:10	UAVs Low Speed Aerodynamics Prof. T. Lekas	Electronics for UAVs B		Work Group study on Project tasks	Closing ceremony (certificates)				
13:20 - 14:00	Students familiarisation with cadets	Prof. P. Papakanellos	Self study	Work Group study on Project tasks					
14:15 - 15:30	Lunch Break	Lunch Break	Lunch Break	Lunch Break					
Afternoon	Free	Self study/Free	Free time visit to the Golden Mall	Sightseeing, Short trip for the participants Visit ot the Akropoiis Museum					

* + *

of the European Union

Learning Teaching & Training Activity (LTTA) Interdisciplinary Scientific Project

DEENICE COURSE

8

SÉCURITÉ ET DE DÉFENSE

No.	Subjects						
1	Applied Informatics	Network of teachers	RO MTA	RO MTA	3		
2	Applied Automation for Engineering Systems	Network of teachers	PL MUT	RUIVITA	3		
3	Integrated Weapon Systems	Network of teachers	RO MTA	FR FASFA	3		
4	CSDP for Technical Systems	Network of teachers	FR FASFA		3		
5a	Computer Networks	Network of teachers	BG NMU		3		
6a	Programming Languages	Network of teachers	RO MTA	PL MUT	3		
7a	Signal Processing	Network of teachers	GR HAFA		3		
8a	Microcontrollers	Network of teachers	RO MTA		3		
5b	Propulsion Systems	Network of teachers	GR HAFA		3		
6b	Dynamic of Flight	Network of teachers	PL MUT	BG NMU -	3		
7b	Mechanics and Material Science	Network of teachers	GR HAFA		3		
8b	Computer-Aided-Design and Numerical Analysis	Network of teachers	BG NMU		3		
9	Interdisciplinary Scientific Project GR HAFA						
10	Intercultural communication (Bulgarian/French/Greek/Polish/Romanian)						
11	Physical Education and Sports				2		
TOTAL							
Co-funded by the Erasmus+ Programme							

Purpose

Preliminary approach of a **High Altitude Long Endurance (HALE)** unmanned system, to be used as a cheap satellite for surveillance, intelligence, atmospheric research and relay. The HALE should have an endurance of three (3) months (90 days) and be in station at 25000 m. The duration of this project will be one (1) week.

Topics involved

- Electronics
- Electric energy sources
- Electric propulsion
- Composite materials
- Low Reynolds aerodynamics

The approach

<u>STEP 1</u>

Find off the shelf electronic devices of proven efficiency and lowest weight, energy consumption and acquisition cost. The required devices are: synthetic aperture radar, navigation and real time encrypted communication systems and various sensors. First approach of the shape, size, weight, aerodynamic characteristics and number of motors of the aircraft. (Electronics and Aerodynamics and Flight Mechanics).

<u>STEP 2</u>

Find of the shelf electric motors and the propellers combinations suitable for this kind of flight conditions. The requirements are: highest possible propulsive efficiency and lowest motor weight, energy consumption and acquisition cost. Shape, size, weight, aerodynamic characteristics and number of motors of the aircraft revisited (**Electrical Power and Aerodynamics and Flight Mechanics**).

The approach

<u>STEP 3</u>

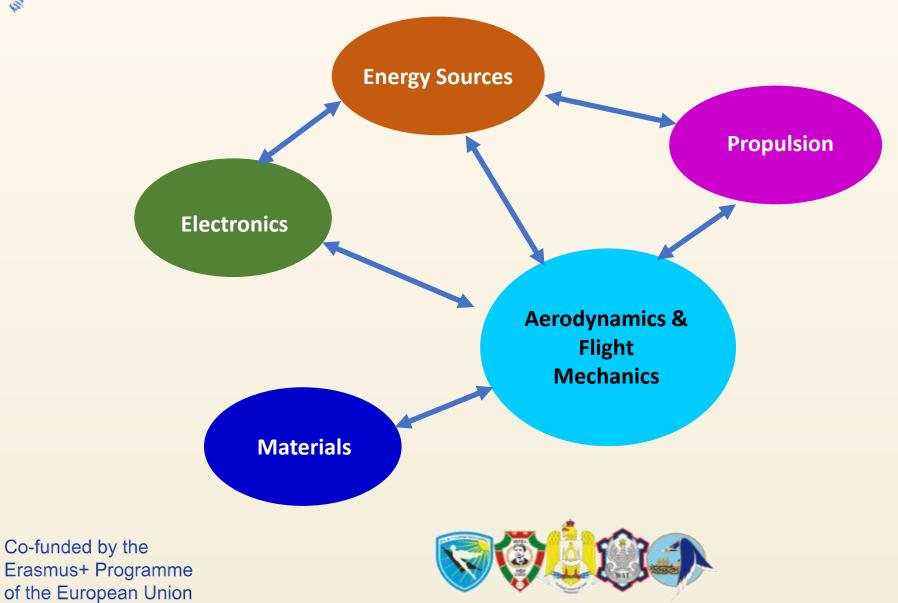
Find the most suitable energy source among solar cells, fuel cells and batteries. Off the shelf material should be found and analyzed from energetic efficiency, weight, cost and delays of acquisition point of view. Shape, size, weight and aerodynamic characteristics of the aircraft revisited. (Electrical Power, Energetics and Aerodynamics and Flight Mechanics).

<u>STEP 4</u>

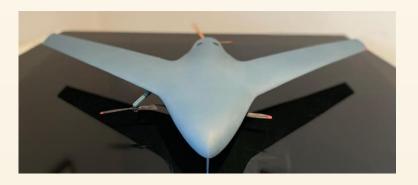
Choice of off the shelf composite materials able to sustain repeatedly the ambient temperature difference between S.L. (takeoff and landing) and long duration flight at the prescribed altitude. High strength and low specific weight and cost are mandatory. Weight of the aircraft and aerodynamic characteristics revisited. (Technology of materials and Aerodynamics and Flight Mechanics).

STEP 5

Shape, size, weight, number of motors, aerodynamic characteristics and performance of the HALE based on the findings of steps 1, 2, 3 and 4. (Aerodynamics and Flight Mechanics).



Case study: Materials selection for UAV's frame



Prerequisites

Structure: continuous fibers Young's modulus (MPa): ? Tensile strength (MPa): ? Weight (kgr): ? Cost: ?

Question:

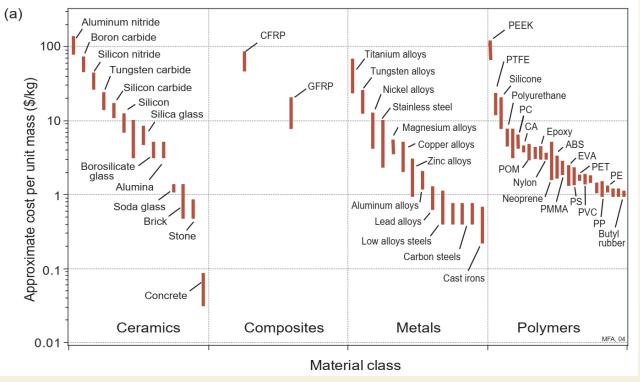
- Select a matrix and fiber reinforcement material
- Select Vol. % and diameter of fiber reinforcement
- Calculate its Young's modulus and Ultimate Tensile Strength to match requirements

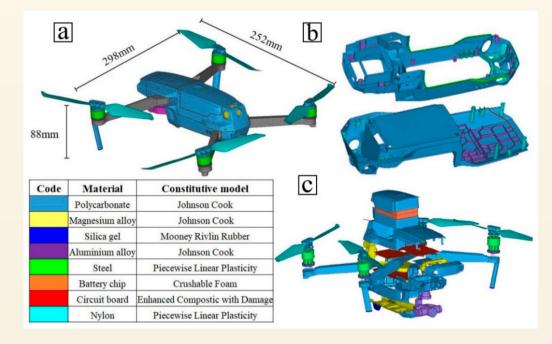
Material selection for UAVs frame | Data guide

Material	Specific Gravity	Tensile Strength [GPa (10 ⁶ psi)]	Specific Strength (GPa)	Modulus of Elasticity [GPa (10 ⁶ psi)]	Specific Modulus (GPa)	Material	Specific Gravity	Tensile Modulus [GPa (ksi)]	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Elongation at Break (%
Graphite	2.2	Whiskers 20 (3)	9.1	700 (100)	318	Polyethylene (low density)	0.917-0.932	0.17–0.28 (25–41)	8.3–31.4 (1.2–4.55)	9.0–14.5 (1.3–2.1)	100-650
Silicon nitride Aluminum oxide	3.2 4.0	5-7 (0.75-1.0) 10-20	1.56-2.2 2.5-5.0	350–380 (50–55) 700–1500	109–118 175–375	Polyethylene (high density)	0.952-0.965	1.06-1.09 (155-158)	22.1–31.0 (3.2–4.5)	26.2–33.1 (3.8–4.8)	10-1200
Silicon carbide	3.2	(1–3) 20	6.25	(100–220) 480	150	Poly(vinyl chloride)	1.30-1.58	2.4–4.1 (350–600)	40.7–51.7 (5.9–7.5)	40.7–44.8 (5.9–6.5)	40-80
Aluminum oxide	3.95	(3) <i>Fibers</i> 1.38	0.35	(70) 379	96	Polytetrafluoroethylene	2.14-2.20	0.40–0.55 (58–80)	20.7–34.5 (3.0–5.0)	—	200-400
Aramid (Kevlar 49 TM)	1.44	(0.2) 3.6–4.1 (0.525–0.600)	2.5–2.85	(55) 131 (19)	91	Polypropylene	0.90-0.91	1.14–1.55 (165–225)	31–41.4 (4.5–6.0)	31.0–37.2 (4.5–5.4)	100-600
Carbon ^a E-glass	1.78–2.15 2.58	1.5-4.8 (0.22-0.70) 3.45	0.70–2.70 1.34	228–724 (32–100) 72.5	106–407 28.1	Polystyrene	1.04-1.05	2.28–3.28 (330–475)	35.9–51.7 (5.2–7.5)	—	1.2-2.5
Boron	2.57	(0.5) 3.6	1.40	(10.5) 400	156	Poly(methyl methacrylate)	1.17-1.20	2.24–3.24 (325–470)	48.3–72.4 (7.0–10.5)	53.8–73.1 (7.8–10.6)	2.0-5.5
Silicon carbide	3.0	(0.52) 3.9 (0.57)	1.30	(60) 400 (60)	133	Phenol-formaldehyde	1.24–1.32	2.76–4.83 (400–700)	34.5-62.1 (5.0-9.0)	—	1.5-2.0
UHMWPE (Spectra 900 TM)	0.97	2.6 (0.38) Metallic Wires	2.68	117 (17)	121	Nylon 6,6	1.13-1.15	1.58–3.80 (230–550)	75.9–94.5 (11.0–13.7)	44.8-82.8 (6.5-12)	15-300
High-strength steel	7.9	2.39 (0.35)	0.30 0.22	210 (30) 324	26.6 31.8	Polyester (PET)	1.29–1.40	2.8–4.1 (400–600)	48.3–72.4 (7.0–10.5)	59.3 (8.6)	30-300
Molybdenum Tungsten	10.2 19.3	2.2 (0.32) 2.89 (0.42)	0.22	324 (47) 407 (59)	21.1	Polycarbonate	1.20	2.38 (345)	62.8–72.4 (9.1–10.5)	62.1 (9.0)	110-150

^{*a*} The term "carbon" instead of "graphite" is used to denote these fibers, since they are composed of crystalline graphite regions, and also of noncrystalline material and areas of crystal misalignment.

Co-funded by the Erasmus+ Programme of the European Union Source: Modern Plastics Encyclopedia '96. Copyright 1995, The McGraw-Hill Companies. Reprinted with permission.


M. Ashby, Materials Selection in Mechanical Design, Elsevier



Material selection for UAVs frame | Chart guide

M. Ashby, Materials Selection in Mechanical Design, Elsevier

Brainstorming

coaching

Calculating & solving

Co-funded by the Erasmus+ Programme of the European Union

Team working

Visit to HAFA's Museum

HAFA's Aviation yard

Commemorative closing photo

Attending the project presentation

Commander's speech

Conferment of degrees

QUESTIONS?

SUGGESTIONS?

RECOMMENDATIONS?

